SDS Number – Z0338

Sid Harvey Item number – T733-2F, T733-2MT, T733-4F, T73310F, T733-10MT, 1201102, & 4458267
SAFETY DATA SHEET
Oxygen

Section 1. Identification

GHS product identifier : Oxygen
Chemical name : oxygen
Other means of identification : Molecular oxygen; Oxygen molecule; Pure oxygen; O2; UN 1072; Dioxygen; Oxygen USP, Aviator’s Breathing Oxygen (ABO)
Product use : Synthetic/Analytical chemistry.
Synonym : Molecular oxygen; Oxygen molecule; Pure oxygen; O2; UN 1072; Dioxygen; Oxygen USP, Aviator’s Breathing Oxygen (ABO)
SDS # : 001043
Supplier’s details : Airgas USA, LLC and its affiliates
259 North Radnor-Chester Road
Suite 100
Radnor, PA 19087-5283
1-610-687-5253

Emergency telephone number (with hours of operation) : 1-866-734-3438

Section 2. Hazards identification

OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).

Classification of the substance or mixture : OXIDIZING GASES - Category 1
GASES UNDER PRESSURE - Compressed gas

GHS label elements
Hazard pictograms : ⚠️ ⚠️

Signal word : Danger

Hazard statements : May cause or intensify fire; oxidizer.
Contains gas under pressure; may explode if heated.

Precautionary statements
General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use.
Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Open valve slowly. Use only with equipment cleaned for Oxygen service.

Prevention : Keep away from clothing, incompatible materials and combustible materials. Keep reduction valves free from grease and oil. Use and store only outdoors or in a well ventilated place.

Response : In case of fire: Stop leak if safe to do so.

Storage : Protect from sunlight. Protect from sunlight when ambient temperature exceeds 52°C/125°F. Store in a well-ventilated place.

Disposal : Not applicable.

Date of issue/Date of revision : 6/2/2015. Date of previous issue : 6/2/2015. Version : 0.05 1/12
Section 2. Hazards identification

Hazards not otherwise classified : None known.

Section 3. Composition/information on ingredients

<table>
<thead>
<tr>
<th>Substance/mixture</th>
<th>Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical name</td>
<td>oxygen</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Molecular oxygen; Oxygen molecule; Pure oxygen; O2; UN 1072; Dioxygen; Oxygen USP, Aviator's Breathing Oxygen (ABO)</td>
</tr>
</tbody>
</table>

CAS number/other identifiers

| CAS number | 7782-44-7 |
| Product code | 001043 |

<table>
<thead>
<tr>
<th>Ingredient name</th>
<th>%</th>
<th>CAS number</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxygen</td>
<td>100</td>
<td>7782-44-7</td>
</tr>
</tbody>
</table>

There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section.

Occupational exposure limits, if available, are listed in Section 8.

Section 4. First aid measures

Description of necessary first aid measures

Eye contact : Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 10 minutes. Get medical attention.

Inhalation : Remove victim to fresh air and keep at rest in a position comfortable for breathing. If not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Get medical attention if adverse health effects persist or are severe. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband.

Skin contact : Flush contaminated skin with plenty of water. Remove contaminated clothing and shoes. Get medical attention if symptoms occur. Wash clothing before reuse. Clean shoes thoroughly before reuse.

Ingestion : As this product is a gas, refer to the inhalation section.

Most important symptoms/effects, acute and delayed

Potential acute health effects

Eye contact : May cause eye irritation. Contact with rapidly expanding gas may cause burns or frostbite.

Inhalation : No known significant effects or critical hazards.

Skin contact : May cause skin irritation. Contact with rapidly expanding gas may cause burns or frostbite.

Frostbite : Try to warm up the frozen tissues and seek medical attention.

Ingestion : As this product is a gas, refer to the inhalation section.

Over-exposure signs/symptoms

Eye contact : No specific data.

Inhalation : No specific data.

Skin contact : No specific data.
Section 4. First aid measures

| Ingestion | No specific data. |

Indication of immediate medical attention and special treatment needed, if necessary

Notes to physician
- Treat symptomatically. Contact poison treatment specialist immediately if large quantities have been ingested or inhaled.

Specific treatments
- No specific treatment.

Protection of first-aiders
- No action shall be taken involving any personal risk or without suitable training. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation.

See toxicological information (Section 11)

Section 5. Fire-fighting measures

Extinguishing media
- **Suitable extinguishing media**: Use an extinguishing agent suitable for the surrounding fire.
- **Unsuitable extinguishing media**: None known.

Specific hazards arising from the chemical
- Contains gas under pressure. Oxidizing material. This material increases the risk of fire and may aid combustion. Contact with combustible material may cause fire. In a fire or if heated, a pressure increase will occur and the container may burst or explode.

Hazardous thermal decomposition products
- No specific data.

Special protective actions for fire-fighters
- Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training. Contact supplier immediately for specialist advice. Move containers from fire area if this can be done without risk. Use water spray to keep fire-exposed containers cool. If involved in fire, shut off flow immediately if it can be done without risk.

Special protective equipment for fire-fighters
- Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

Section 6. Accidental release measures

Personal precautions, protective equipment and emergency procedures

For non-emergency personnel
- No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Shut off all ignition sources. No flares, smoking or flames in hazard area. Avoid breathing gas. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment.

For emergency responders
- If specialised clothing is required to deal with the spillage, take note of any information in Section 8 on suitable and unsuitable materials. See also the information in "For non-emergency personnel".

Environmental precautions
- Ensure emergency procedures to deal with accidental gas releases are in place to avoid contamination of the environment. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air).

Methods and materials for containment and cleaning up

Small spill
- Immediately contact emergency personnel. Stop leak if without risk. Use spark-proof tools and explosion-proof equipment.
Section 6. Accidental release measures

Large spill

Immediately contact emergency personnel. Stop leak if without risk. Use spark-proof tools and explosion-proof equipment. Note: see Section 1 for emergency contact information and Section 13 for waste disposal.

Section 7. Handling and storage

Precautions for safe handling

Protective measures

Put on appropriate personal protective equipment (see Section 8). Contains gas under pressure. Avoid contact with eyes, skin and clothing. Avoid breathing gas. Keep away from clothing, incompatible materials and combustible materials. Keep reduction valves free from grease and oil. Empty containers retain product residue and can be hazardous. Do not puncture or incinerate container. Use equipment rated for cylinder pressure. Close valve after each use and when empty. Protect cylinders from physical damage; do not drag, roll, slide, or drop. Use a suitable hand truck for cylinder movement.

Advice on general occupational hygiene

Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Remove contaminated clothing and protective equipment before entering eating areas. See also Section 8 for additional information on hygiene measures.

Conditions for safe storage, including any incompatibilities

Store in accordance with local regulations. Store in a segregated and approved area. Store away from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see Section 10). Separate from acids, alkalis, reducing agents and combustibles. Keep container tightly closed and sealed until ready for use. Cylinders should be stored upright, with valve protection cap in place, and firmly secured to prevent falling or being knocked over. Cylinder temperatures should not exceed 52 °C (125 °F).

Section 8. Exposure controls/personal protection

Control parameters

Occupational exposure limits

None.

Appropriate engineering controls

Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation. In some cases, fume scrubbers, filters or engineering modifications to the process equipment will be necessary to reduce emissions to acceptable levels.

Environmental exposure controls

Good general ventilation should be sufficient to control worker exposure to airborne contaminants.

Individual protection measures

Hygiene measures

Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Wash contaminated clothing before reusing. Ensure that eyewash stations and safety showers are close to the workstation location.

Eye/face protection

Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists, gases or dusts. If contact is possible, the following protection should be worn, unless the assessment indicates a higher degree of protection: safety glasses with side-shields.

Skin protection

Date of issue/Date of revision: 6/2/2015. Date of previous issue: 6/2/2015. Version: 0.05 4/12
Section 8. Exposure controls/personal protection

Hand protection: Chemical-resistant, impervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary. Considering the parameters specified by the glove manufacturer, check during use that the gloves are still retaining their protective properties. It should be noted that the time to breakthrough for any glove material may be different for different glove manufacturers. In the case of mixtures, consisting of several substances, the protection time of the gloves cannot be accurately estimated.

Body protection: Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.

Other skin protection: Appropriate footwear and any additional skin protection measures should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.

Respiratory protection: Use a properly fitted, air-purifying or air-fed respirator complying with an approved standard if a risk assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator.

Section 9. Physical and chemical properties

Appearance

Physical state: Gas. [Compressed gas.]
Color: Colorless. Blue.
Molecular weight: 32 g/mole
Molecular formula: O2
Boiling/condensation point: -183°C (-297.4°F)
Melting/freezing point: -218.4°C (-361.1°F)
Critical temperature: -118.15°C (-180.7°F)
Odor: Odorless.
Odor threshold: Not available.
PH: Not available.
Flash point: [Product does not sustain combustion.]
Burning time: Not applicable.
Burning rate: Not applicable.
Evaporation rate: Not available.
Flammability (solid, gas): Extremely flammable in the presence of the following materials or conditions: reducing materials, combustible materials and organic materials.

Lower and upper explosive (flammable) limits: Not available.
Vapor pressure: Not available.
Vapor density: 1.1 (Air = 1)
Specific Volume (ft³/lb): 12.0482
Gas Density (lb/ft³): 0.083
Relative density: Not applicable.
Solubility: Not available.
Solubility in water: Not available.
Partition coefficient: n-octanol/water: 0.65
Auto-ignition temperature: Not available.
Decomposition temperature: Not available.

Date of issue/Date of revision: 6/2/2015. Date of previous issue: 6/2/2015. Version: 0.05 5/12
Section 9. Physical and chemical properties

- SADT: Not available.
- Viscosity: Not applicable.

Section 10. Stability and reactivity

- Reactivity: No specific test data related to reactivity available for this product or its ingredients.
- Chemical stability: The product is stable.
- Possibility of hazardous reactions: Hazardous reactions or instability may occur under certain conditions of storage or use. Conditions may include the following: contact with combustible materials. Reactions may include the following: risk of causing fire.
- Conditions to avoid: No specific data.
- Incompatibility with various substances: Extremely reactive or incompatible with the following materials: oxidizing materials, reducing materials and combustible materials.
- Hazardous decomposition products: Under normal conditions of storage and use, hazardous decomposition products should not be produced.
- Hazardous polymerization: Under normal conditions of storage and use, hazardous polymerization will not occur.

Section 11. Toxicological information

Information on toxicological effects

- Acute toxicity: Not available.
- Irritation/Corrosion: Not available.
- Sensitization: Not available.
- Mutagenicity: Not available.
- Carcinogenicity: Not available.
- Reproductive toxicity: Not available.
- Teratogenicity: Not available.
- Specific target organ toxicity (single exposure): Not available.
- Specific target organ toxicity (repeated exposure): Not available.

Date of issue/Date of revision: 6/2/2015.
Date of previous issue: 6/2/2015.
Version: 0.05
Section 11. Toxicological information

Not available.

Aspiration hazard
Not available.

Information on the likely routes of exposure

Potential acute health effects

- **Eye contact**: May cause eye irritation. Contact with rapidly expanding gas may cause burns or frostbite.
- **Inhalation**: No known significant effects or critical hazards.
- **Skin contact**: May cause skin irritation. Contact with rapidly expanding gas may cause burns or frostbite.
- **Ingestion**: As this product is a gas, refer to the inhalation section.

Symptoms related to the physical, chemical and toxicological characteristics

- **Eye contact**: No specific data.
- **Inhalation**: No specific data.
- **Skin contact**: No specific data.
- **Ingestion**: No specific data.

Delayed and immediate effects and also chronic effects from short and long term exposure

- **Short term exposure**
 - Potential immediate effects: Not available.
 - Potential delayed effects: Not available.

- **Long term exposure**
 - Potential immediate effects: Not available.
 - Potential delayed effects: Not available.

Potential chronic health effects

- **General**: No known significant effects or critical hazards.
- **Carcinogenicity**: No known significant effects or critical hazards.
- **Mutagenicity**: No known significant effects or critical hazards.
- **Teratogenicity**: No known significant effects or critical hazards.
- **Developmental effects**: No known significant effects or critical hazards.
- **Fertility effects**: No known significant effects or critical hazards.

Numerical measures of toxicity

Acute toxicity estimates

Not available.

Date of issue/Date of revision: 6/2/2015. Date of previous issue: 6/2/2015. Version: 0.05 7/12
Section 12. Ecological information

Toxicity
Not available.

Persistence and degradability
Not available.

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Product/ingredient name</th>
<th>LogP_{ow}</th>
<th>BCF</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxygen</td>
<td>0.65</td>
<td>-</td>
<td>low</td>
</tr>
</tbody>
</table>

Mobility in soil

Soil/water partition coefficient \((K_{OC})\): Not available.

Other adverse effects: No known significant effects or critical hazards.

Section 13. Disposal considerations

Disposal methods: The generation of waste should be avoided or minimized wherever possible. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Waste should not be disposed of untreated to the sewer unless fully compliant with the requirements of all authorities with jurisdiction. Empty Airgas-owned pressure vessels should be returned to Airgas. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe way. Empty containers or liners may retain some product residues. Do not puncture or incinerate container.

Section 14. Transport information

<table>
<thead>
<tr>
<th>DOT</th>
<th>TDG</th>
<th>Mexico</th>
<th>IMDG</th>
<th>IATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN number</td>
<td>UN1072</td>
<td>UN1072</td>
<td>UN1072</td>
<td>UN1072</td>
</tr>
<tr>
<td>UN proper shipping name</td>
<td>OXYGEN, COMPRESSED</td>
<td>OXYGEN, COMPRESSED</td>
<td>OXYGEN, COMPRESSED</td>
<td>OXYGEN, COMPRESSED</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td>2.2 (5.1)</td>
<td>2.2</td>
<td>2.2 (5.1)</td>
<td>2.2 (5.1)</td>
</tr>
<tr>
<td>Packing group</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Additional information</td>
<td>Limited quantity Yes.</td>
<td>Explosive Limit and Limited Quantity Index 0.125</td>
<td>-</td>
<td>Passenger and Cargo Aircraft Quantity limitation: 75 kg</td>
</tr>
<tr>
<td></td>
<td>Packaging instruction</td>
<td>ERAP Index 3000</td>
<td>-</td>
<td>Cargo Aircraft Only Quantity limitation: 150 kg</td>
</tr>
<tr>
<td></td>
<td>Passenger aircraft Quantity limitation: 75 kg</td>
<td>Passenger Carrying Ship Index</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Date of issue/Date of revision: 6/2/2015. Date of previous issue: 6/2/2015. Version: 0.05 8/12.
Section 14. Transport information

| Quantity limitation: 150 kg | 50 Passenger Carrying Road or Rail Index |
| Special provisions A52 | Special provisions 75 |

“Refer to CFR 49 (or authority having jurisdiction) to determine the information required for shipment of the product.”

Special precautions for user: Transport within user's premises: always transport in closed containers that are upright and secure. Ensure that persons transporting the product know what to do in the event of an accident or spillage.

Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code: Not available.

Section 15. Regulatory information

U.S. Federal regulations: TSCA 8(a) CDR Exempt/Partial exemption: This material is listed or exempted.
United States inventory (TSCA 8b): This material is listed or exempted.

Clean Air Act Section 112 (b) Hazardous Air Pollutants (HAPs): Not listed
Clean Air Act Section 602 Class I Substances: Not listed
Clean Air Act Section 602 Class II Substances: Not listed
DEA List I Chemicals (Precursor Chemicals): Not listed
DEA List II Chemicals (Essential Chemicals): Not listed
SARA 302/304
Composition/information on ingredients
No products were found.

SARA 304 RQ: Not applicable.
SARA 311/312 Classification: Sudden release of pressure

Composition/information on ingredients

<table>
<thead>
<tr>
<th>Name</th>
<th>%</th>
<th>Fire hazard</th>
<th>Sudden release of pressure</th>
<th>Reactive</th>
<th>Immediate (acute) health hazard</th>
<th>Delayed (chronic) health hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxygen</td>
<td>100</td>
<td>No.</td>
<td>Yes.</td>
<td>No.</td>
<td>No.</td>
<td>No.</td>
</tr>
</tbody>
</table>

State regulations
Massachusetts: This material is listed.

Date of issue/Date of revision: 6/2/2015. Date of previous issue: 6/2/2015. Version: 0.05 9/12
Section 15. Regulatory information

New York : This material is not listed.
New Jersey : This material is listed.
Pennsylvania : This material is listed.
Canada inventory : This material is listed or exempted.

International regulations

International lists : Australia inventory (AICS): This material is listed or exempted.
China inventory (IECSC): This material is listed or exempted.
Japan inventory: Not determined.
Korea inventory: This material is listed or exempted.
Malaysia Inventory (EHS Register): Not determined.
New Zealand Inventory of Chemicals (NZIoC): This material is listed or exempted.
Philippines inventory (PICCS): This material is listed or exempted.
Taiwan inventory (CSNN): Not determined.

Chemical Weapons Convention List Schedule I Chemicals : Not listed
Chemical Weapons Convention List Schedule II Chemicals : Not listed
Chemical Weapons Convention List Schedule III Chemicals : Not listed

Canada

WHMIS (Canada) : Class A: Compressed gas.
Class C: Oxidizing material.
CEPA Toxic substances: This material is not listed.
Canadian ARET: This material is not listed.
Canadian NPRI: This material is not listed.
Alberta Designated Substances: This material is not listed.
Ontario Designated Substances: This material is not listed.
Quebec Designated Substances: This material is not listed.

Section 16. Other information

Canada Label requirements : Class A: Compressed gas.
Class C: Oxidizing material.

Hazardous Material Information System (U.S.A.)

<table>
<thead>
<tr>
<th>Health</th>
<th>Flammability</th>
<th>Physical hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Caution: HMIS® ratings are based on a 0-4 rating scale, with 0 representing minimal hazards or risks, and 4 representing significant hazards or risks Although HMIS® ratings are not required on SDSs under 29 CFR 1910. 1200, the preparer may choose to provide them. HMIS® ratings are to be used with a fully implemented HMIS® program. HMIS® is a registered mark of the National Paint & Coatings Association (NPCA). HMIS® materials may be purchased exclusively from J. J. Keller (800) 327-6868.

The customer is responsible for determining the PPE code for this material.

National Fire Protection Association (U.S.A.)
Section 16. Other information

Reprinted with permission from NFPA 704-2001, Identification of the Hazards of Materials for Emergency Response Copyright ©1997, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the complete and official position of the National Fire Protection Association, on the referenced subject which is represented only by the standard in its entirety.

Copyright ©2001, National Fire Protection Association, Quincy, MA 02269. This warning system is intended to be interpreted and applied only by properly trained individuals to identify fire, health and reactivity hazards of chemicals. The user is referred to certain limited numbers of chemicals with recommended classifications in NFPA 49 and NFPA 325, which would be used as a guideline only. Whether the chemicals are classified by NFPA or not, anyone using the 704 systems to classify chemicals does so at their own risk.

History

Date of printing	: 6/2/2015.
Date of issue/Date of revision	: 6/2/2015.
Date of previous issue	: 6/2/2015.
Version	: 0.05

Key to abbreviations

ATE = Acute Toxicity Estimate
BCF = Bioconcentration Factor
GHS = Globally Harmonized System of Classification and Labelling of Chemicals
IATA = International Air Transport Association
IBC = Intermediate Bulk Container
IMDG = International Maritime Dangerous Goods
LogPow = logarithm of the octanol/water partition coefficient
UN = United NationsACGIH – American Conference of Governmental Industrial Hygienists
AIHA – American Industrial Hygiene Association
CAS – Chemical Abstract Services
CEPA – Canadian Environmental Protection Act
CERCLA – Comprehensive Environmental Response, Compensation, and Liability Act (EPA)
CPR – Controlled Products Regulations
DSL – Domestic Substances List
GWP – Global Warming Potential
IARC – International Agency for Research on Cancer
ICAO – International Civil Aviation Organisation
Inh – Inhalation
LC – Lethal concentration
LD – Lethal dosage
NDSL – Non-Domestic Substances List
NIOSH – National Institute for Occupational Safety and Health
TDG – Canadian Transportation of Dangerous Goods Act and Regulations
TLV – Threshold Limit Value
TSCA – Toxic Substances Control Act
WEEL – Workplace Environmental Exposure Level
WHMIS – Canadian Workplace Hazardous Material Information System

References

Not available.

Indicates information that has changed from previously issued version.
Notice to reader

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein.

Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.
PART I What is the material and what do I need to know in an emergency?

1. PRODUCT IDENTIFICATION

CHEMICAL NAME; CLASS: OXYGEN O₂
OXYGEN O₂ REFRIGERATED LIQUID
Document Number: 001043

PRODUCT USE: For general analytical/synthetic chemical uses.

SUPPLIER/MANUFACTURER’S NAME: AIRGAS INC.

ADDRESS: 259 North Radnor-Chester Road
Suite 100
Radnor, PA 19087-5283

BUSINESS PHONE: 1-610-687-5253
EMERGENCY PHONE: 1-800-949-7937
International: 423-479-0293

DATE OF PREPARATION: May 20, 1996
DATE OF REVISION: June 5, 2003

2. COMPOSITION and INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>CHEMICAL NAME</th>
<th>GAS #</th>
<th>mole %</th>
<th>EXPOSURE LIMITS IN AIR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACGIH-TLV</td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>Oxygen</td>
<td>7782-44-7</td>
<td>95.0%</td>
<td>TWA</td>
</tr>
<tr>
<td>Maximum Impurities</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are no specific exposure limits for Oxygen. Oxygen levels should be maintained above 19.5% and below 23.5%.

None of the trace impurities in this mixture contribute significant additional hazards at the concentrations present in this product. All pertinent hazard information has been provided in this document, per the requirements of the Federal Occupational Safety and Health Administration Standard (29 CFR 1910.1200), U.S. State equivalent Standards and Canadian Workplace Hazardous Materials Identification System Standards (CPR 4).

NE = Not Established.

See Section 16 for Definitions of Terms Used.

NOTE (1): ALL WHMIS required information is included in appropriate sections based on the ANSI Z400.1-1998 format. This gas has been classified in accordance with the hazard criteria of the CPR and the MSDS contains all the information required by the CPR.
3. HAZARD IDENTIFICATION

EMERGENCY OVERVIEW: Oxygen is a colorless, odorless, oxidizing gas, or a colorless, odorless, cryogenic liquid. The chief health hazard presented by this gas at atmospheric pressures is respiratory system irritation after overexposure to high oxygen concentrations. Contact with the cryogenic liquid can cause frostbite and burns to exposed tissue. The main physical hazard associated with releases of this gas is related to its oxidizing power. This gas is not flammable, but is an oxidizing gas which can accelerate the burning of common combustible materials. The cryogenic liquid will rapidly boil to the gas at standard temperatures and pressures. Emergency responders must practice extreme caution when approaching oxygen releases because of the extreme fire potential.

OXYGEN GAS

HAZARDOUS MATERIAL IDENTIFICATION SYSTEM

HEALTH HAZARD (BLUE) 0

FLAMMABILITY HAZARD (RED) 0

PHYSICAL HAZARD (YELLOW) 0

PROTECTIVE EQUIPMENT

EYES RESPIRATORY HANDS BODY

See Section 8

See Section 8

For Routine Industrial Use and Handling Applications

LIQUID OXYGEN

HAZARDOUS MATERIAL IDENTIFICATION SYSTEM

HEALTH HAZARD (BLUE) 3

FLAMMABILITY HAZARD (RED) 0

PHYSICAL HAZARD (YELLOW) 0

PROTECTIVE EQUIPMENT

EYES RESPIRATORY HANDS BODY

See Section 8

See Section 8

See Section 8

For Routine Industrial Use and Handling Applications

SYMPTOMS OF OVEREXPOSURE BY ROUTE OF EXPOSURE: The most significant route of overexposure for this gas or cryogenic liquid by inhalation. Skin and eye contact is also possible for the cryogenic liquid. The following paragraphs describe symptoms of exposure by route of exposure.

INHALATION: Normally, air contains 21% oxygen. No health effects have been observed in people exposed to 50% Oxygen at 1 atm. for 24 hours or longer. Exposure to this concentration at 3 atmospheres or more can cause adverse effects. High concentrations of this gas create an oxygen-rich environment. Individuals breathing such an atmosphere containing 51-100% Oxygen may experience nausea, dizziness, coughing, and bronchial irritation. Exposures to high Oxygen concentrations, especially at elevated pressures, can cause hypothermia, increased depth of respiration, bradycardia, pulmonary discomfort, central nervous system effects (e.g., mood changes, dizziness), peripheral vasoconstriction, amblyopia (loss of vision), seizures, or death. Exposure levels to pure oxygen which have produced the adverse symptoms described above are summarized below.

<table>
<thead>
<tr>
<th>DURATION OF EXPOSURE</th>
<th>PRESSURE OF OXYGEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 hours</td>
<td>Sea level</td>
</tr>
<tr>
<td>3 hours</td>
<td>3 atmospheres</td>
</tr>
<tr>
<td>30 minutes</td>
<td>4 atmospheres</td>
</tr>
<tr>
<td>5 minutes</td>
<td>7 atmospheres</td>
</tr>
</tbody>
</table>

NOTE: Pure oxygen at 1/3 atmospheric pressure can be inhaled for weeks without symptoms. Inhalation of pure oxygen for up to 16 hours per day for many days and 65% oxygen in air for extended periods does not cause symptoms of oxygen toxicity.

OTHER POTENTIAL HEALTH EFFECTS: Contact of the skin or eyes with cryogenic liquid or rapidly expanding gases (which are released under high pressure) may cause frostbite. Symptoms of frostbite include change in skin color to white or grayish-yellow. The pain after contact with liquid can quickly subside. Ingestion and absorption through the skin are not considered significant routes of entry of oxygen into the body.
3. HAZARD IDENTIFICATION (Continued)

HEALTH EFFECTS OR RISKS FROM EXPOSURE: An Explanation in Lay Terms. Overexposure to Oxygen may cause the following health effects:

ACUTE: The most significant hazard associated with this gas is inhalation of oxygen-rich atmospheres. Symptoms of overexposure to Oxygen-rich atmospheres include nausea, dizziness, respiratory problems, lowering of body temperature, loss of vision, seizures, or death. Contact with cryogenic liquid or rapidly expanding gases (which are released under high pressure) may cause frostbite.

CHRONIC: Long-term exposure to high atmospheric concentrations of oxygen at normal pressure or elevated pressure may produce severe thickening and scarring of lung tissues. Blood hemoglobin concentration decreases (thus reducing oxygen-carrying capacity) with prolonged exposure to high concentrations. See Section 11 (Toxicological Information) for additional information.

PART II What should I do if a hazardous situation occurs?

4. FIRST-AID MEASURES

RESCUERS SHOULD NOT ATTEMPT TO RETRIEVE VICTIMS OF OVER-EXPOSURE WITHOUT ADEQUATE PERSONAL PROTECTIVE EQUIPMENT. At a minimum, Self-Contained Breathing Apparatus Personal Protective equipment (and fire retardant clothing, if appropriate) should be worn to protect against high oxygen content or super-heated gases in the event of fire.

Victim(s) must be taken for medical attention. Rescuers should be taken for medical attention, if necessary. Take copy of label and MSDS to physician or other health professional with victim(s). Medical care providers should refer to Section 11 of this MSDS for additional information.

Remove victim(s) to fresh air, as quickly as possible. Trained personnel should administer supplemental oxygen and/or cardio-pulmonary resuscitation, if necessary. Supplemental oxygen is not normally appropriate. Victims tend to recover rapidly, when removed from the hypoxic exposure.

In case of frostbite, place the frostbitten part in warm water. DO NOT USE HOT WATER. If warm water is not available, or is impractical to use, wrap the affected parts gently in blankets. Alternatively, if the fingers or hands are frostbitten, place the affected area in the armpit. Encourage victim to gently exercise the affected part while being warmed. Seek immediate medical attention.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: Pre-existing respiratory conditions may be aggravated by overexposure to Oxygen.

RECOMMENDATIONS TO PHYSICIANS: Treat symptoms and reduce overexposure. Symptoms of overexposure usually are relieved quickly. Immediate sedation and anticonvulsive therapy should be provided, as needed.

5. FIRE-FIGHTING MEASURES

RECOMMENDATIONS TO FIRE FIGHTERS: Non-flammable gas. Use extinguishing media appropriate for surrounding fire.

UNUSUAL FIRE AND EXPLOSION HAZARDS: Oxygen does not burn; however, cylinders, when involved in fire, may rupture or burst in the heat of the fire. Oxygen will support and accelerate combustion. Common combustible materials will burn readily in elevated oxygen environments.

Water Spray: YES Carbon Dioxide: YES Foam: YES
Halon: YES Dry Chemical: YES Other: Any "ABC" Class.

FLASH POINT: Not applicable.
AUTOIGNITION TEMPERATURE: Not applicable.
FLAMMABLE LIMITS (in air by volume, %):

LOWER (LEL): Not applicable.
UPPER (UEL): Not applicable.

OXYGEN GAS

LIQUID OXYGEN

See Section 16 for Definition of Ratings

OXYGEN - O₂ MSDS (Document # 001043) PAGE 3 OF 11
5. FIRE-FIGHTING MEASURES (Continued)

RESPONSE TO FIRE INVOLVING CRYOGEN: Cryogenic oxygen may contribute to the ignition of any combustible material, including asphalt and wood. Extreme caution must be used when cryogenic oxygen storage vessels are involved in a fire. Cryogenic liquids can be particularly dangerous during fires because of their potential to rapidly freeze water. Careless use of water may cause heavy icing. Furthermore, relatively warm water greatly increases the evaporation rate of Oxygen. If large concentrations of Oxygen gas are present, the water vapor in the surrounding air will condense, creating a dense fog that may make it difficult to find fire exits or equipment. Liquid Oxygen, when exposed to the atmosphere, will produce a cloud of ice/fog in the air upon its release.

Explosion Sensitivity to Static Discharge: Not Sensitive.

SPECIAL FIRE-FIGHTING PROCEDURES: Structural fire-fighters must wear Self-Contained Breathing Apparatus and full protective equipment. Do not enter areas which have more than 23.5% oxygen in the atmosphere, since a serious fire and explosion hazard exists. Remove all flammable and combustible materials from vicinity of a release, if it can be done without risk to firefighters. Direct water onto vessels to keep the vessels cool. Shut-off the flow of oxygen or move vessels from fire area if it can be done safely. Withdraw from the area in case of rising sounds from venting safety devices or any discoloration of vessels due to fire.

6. ACCIDENTAL RELEASE MEASURES

SPILL AND LEAK RESPONSE: Uncontrolled releases should be responded to by trained personnel using pre-planned procedures. Proper protective equipment should be used. In case of a release, clear the affected area and protect people. Minimum Personal Protective Equipment should be Level B: fire protective clothing, mechanically-resistant, fire protective gloves and Self-Contained Breathing Apparatus. In general, DO NOT ENTER AN AREA IF THE OXYGEN CONTENT EXCEEDS 23.5%. USE VENTILATION TO REDUCE THE OXYGEN LEVELS. Locate and seal the source of the leaking gas. Protect personnel attempting the shut-off with water-spray. Allow the gas to dissipate. Monitor the surrounding area for oxygen levels. The atmosphere must have at least 19.5 percent and less than 23.5% oxygen before personnel can be allowed in the area without Self-Contained Breathing Apparatus. Attempt to close the main source valve prior to entering the area. If this does not stop the release (or if it is not possible to reach the valve), allow the gas to release in-place or remove it to a safe area and allow the gas to be released there.

RESPONSE TO CRYOGENIC RELEASE: Clear the affected area and allow the liquid to evaporate and the gas to dissipate. After the gas is formed, follow the instructions provided in the previous paragraph. If the area must be entered by emergency personnel, SCBA, Kevlar gloves, and appropriate foot and leg protection and fire protective clothing must be worn.

PART III How can I prevent hazardous situations from occurring?

7. HANDLING and STORAGE

WORK PRACTICES AND HYGIENE PRACTICES: Do not eat or drink while handling chemicals. Be aware of any signs of overexposure to this gas (see Section 3, Hazard Information).

STORAGE AND HANDLING PRACTICES: Cylinders should be stored in dry, well-ventilated areas away from sources of heat. Compressed gases can present significant safety hazards. Store containers away from heavily trafficked areas and emergency exits. Post “No Smoking or Open Flames” signs in storage or use areas.

SPECIAL PRECAUTIONS FOR HANDLING GAS CYLINDERS: Protect cylinders against physical damage. Store in cool, dry, well-ventilated, fireproof area, away from flammable materials and corrosive atmospheres. Store away from heat and ignition sources and out of direct sunlight. Do not store near elevators, corridors or loading docks. Do not allow area where cylinders are stored to exceed 52°C (125°F). Use only storage containers and equipment (pipes, valves, fittings to relieve pressure, etc.) designed for the storage of Oxygen. Do not store containers where they can come into contact with moisture.

Cylinders should be stored upright and be firmly secured to prevent failing or being knocked over. Cylinders can be stored in the open, but in such cases, should be protected against extremes of weather and from the dampness of the ground to prevent rusting.

Keep Dewar flasks of liquid oxygen covered with loose fitting cap. This prevents air or moisture from entering the container, yet allows pressure to escape. Use only the stopper or plug supplied with the container. Ensure that ice does not form in the neck of flasks. If the neck of Dewar flask is blocked by ice or “frozen” air, follow owner’s instruction for removing it. A plugged Dewar or storage flask may develop sufficient pressure to cause catastrophic failure. Ice can also cause pressure release valves to fail. Never tamper with pressure relief devices in valves and cylinders. The temperature of Liquid Oxygen is sufficiently cold to condense and freeze most gases. Consequently, there is a danger of pipes or vents becoming plugged. Liquid Oxygen should therefore be stored and handled under positive pressure or in a closed system to prevent the infiltration and solidification of air or other gases.
7. HANDLING and STORAGE (Continued)

SPECIAL PRECAUTIONS FOR HANDLING GAS CYLINDERS (continued): The following rules are applicable to situations in which cylinders are being used:

Before Use: Move cylinders with a suitable hand-truck. Do not drag, slide or roll cylinders. Do not drop cylinders or permit them to strike each other. Secure cylinders firmly. Leave the valve protection cap, if provided, in-place until cylinder is ready for use.

During Use: Use designated CGA fittings and other support equipment. Do not use adapters. Do not heat cylinder by any means to increase the discharge rate of the product from the cylinder. Use check valve or trap in discharge line to prevent hazardous backflow into the cylinder. Do not use oils or grease on gas-handling fittings or equipment. After Use: Close main cylinder valve. Replace valve protection cap, if provided. Mark empty cylinders "EMPTY".

NOTE: Use only DOT or ASME code containers. Cylinders must not be recharged except by or with the consent of owner. For additional information refer to the Compressed Gas Association Pamphlet P-1, Safe Handling of Compressed Gases in Containers. For cryogenic liquids, refer to CGA P-12, Safe Handling of Cryogenic Liquids. Additionally, refer to CGA Bulletins G-4.3, "Commodity Specification for Oxygen", and G-4.1 "Cleaning Equipment for Oxygen Service".

PROTECTIVE PRACTICES DURING MAINTENANCE OF CONTAMINATED EQUIPMENT: Follow practices indicated in Section 6 (Accidental Release Measures). Make certain application equipment is locked and tagged-out safely. Purge gas handling equipment with inert gas (e.g., Nitrogen) before attempting repairs.

TANK CAR SHIPMENTS: Tank cars carrying Oxygen should be loaded and unloaded in strict accordance with tank car owner's recommendations and all established on-site safety procedures. Appropriate personal protective equipment must be used during tank car operations (see Section 8). All loading and unloading equipment must be inspected, prior to each use. Loading and unloading operations must be attended, at all times. Tank cars must be level and wheels must be locked or blocked prior to loading or unloading. Tank car (for loading) or storage tank (for unloading) must be verified to be correct for receiving this product and be properly prepared, prior to starting the transfer operations. Hose must be verified to be clean and free of incompatible chemicals, prior to connection to the tank car or vessel. Valves and hoses must be verified to be in the correct positions, before starting transfer operations. A sample (if required) must be taken and verified (if required) prior to starting transfer operations. All lines must be blown-down and purged before disconnecting them from the tank car or vessel. Refrigerated Liquid Oxygen is capable of causing the ignition of asphalt. Transfers should be performed on concrete surfaces.

8. EXPOSURE CONTROLS - PERSONAL PROTECTION

VENTILATION AND ENGINEERING CONTROLS: Use with adequate ventilation to maintain Oxygen levels below 19.5% and 23.5% in the work area. Local exhaust ventilation is preferred, because it prevents Oxygen dispersion into the work place by eliminating it at its source. If appropriate, install automatic monitoring equipment to detect the level of Oxygen.

RESPIRATORY PROTECTION: Maintain oxygen levels above 19.5% and below 23.5% in the workplace. Use supplied air respiratory protection during emergency response to a release of Oxygen. If respiratory protection is needed, use only protection authorized in the U.S. Federal OSHA Standard (29 CFR 1910.134), applicable U.S. State regulations, or the Canadian CSA Standard Z94.4-93 and applicable standards of Canadian Provinces. Oxygen levels below 19.5% are considered IDLH by OSHA. In such atmospheres, use of a full-facepiece pressure/demand SCBA or a full facepiece, supplied air respirator with auxiliary self-contained air supply is required under OSHA's Respiratory Protection Standard (1910.134-1998). DO NOT ENTER AN AREA IF THE OXYGEN CONTENT EXCEEDS 23.5%.

EYE PROTECTION: Safety glasses. Face-shields must be worn when using cryogenic Oxygen. If necessary, refer to U.S. OSHA 29 CFR 1910.133, or Canadian Standards.

HAND PROTECTION: Wear mechanically-resistant gloves when handling cylinders of Oxygen. Use low-temperature protective gloves (e.g., Kevlar) when working with containers of Liquid Oxygen. If necessary, refer to U.S. OSHA 29 CFR 1910.136 or applicable Standards of Canada.

BODY PROTECTION: Use body protection appropriate for task. Transfer of large quantities under pressure may require protective equipment appropriate to protect employees from splashes of liquefied product, as well provide sufficient insulation from extreme cold. If a hazard of injury to the feet exists due to falling objects, rolling objects, where objects may pierce the soles of the feet or where employee's feet may be exposed to electrical hazards, use foot protection, as described in U.S. OSHA 29 CFR.

9. PHYSICAL and CHEMICAL PROPERTIES

VAPOR DENSITY: 1.326 kg/m³ (0.083 lb/ft³) EVAPORATION RATE (nBuAc = 1): Not applicable.
SPECIFIC GRAVITY (air = 1): 1.105 FREEZING POINT: -218.8°C (-361.8°F)
SOLUBILITY IN WATER v/v @ 0°C (32°F): 4.9% BOILING POINT @ 1 atm.: -297.4°F (-183.0°C)
VAPOR PRESSURE (psia): Not applicable. pH: Not applicable.
COEFFICIENT WATER/OIL DISTRIBUTION: Log P -0.55 SPECIFIC VOLUME (ft³/lb): 12.1
APPEARANCE AND COLOR: Oxygen is a colorless, odorless gas or a colorless and odorless, cryogenic liquid.
9. **PHYSICAL and CHEMICAL PROPERTIES (Continued)**

HOW TO DETECT THIS SUBSTANCE (warning properties): There are no unusual warning properties associated with a release of Oxygen. A release of the Refrigerated Liquid will be obvious as a result of the fog of atmospheric moisture which condenses in the vicinity of the release. An oxygen monitor can be used to detect oxygen levels.

10. **STABILITY and REACTIVITY**

STABILITY: Stable under conditions of normal temperature and pressure.

DECOMPOSITION PRODUCTS: None.

MATERIALS WITH WHICH SUBSTANCE IS INCOMPATIBLE: Oxygen is incompatible with combustible and flammable materials, chlorinated hydrocarbons, hydrazine, reduced boron compounds, ethers, phosphine, phosphorus tribromide, phosphorous trioxide, tetrafluoroethylene, and compounds which readily form peroxides. The Refrigerated Liquid will cause asphalt to ignite.

HAZARDOUS POLYMERIZATION: Will not occur.

CONDITIONS TO AVOID: Avoid contact with incompatible materials. Cylinders exposed to high temperatures or direct flame can rupture or burst.

PART IV

Is there any other useful information about this material?

11. **TOXICOLOGICAL INFORMATION**

TOXICITY DATA: Oxygen is the vital element in the atmosphere in which we live and breathe. The following toxicity data are for oxygen and are for exposure to high levels in a hyperbaric environment:

- Cylogenic Analysis System (hamster lung) 80 pp
- TC0c (inhalation-woman) 12 pp for 10 minutes. Teratogenic effects.
- TC0c (inhalation-human) 100 pp for 14 hours. Pulmonary effects.

SUSPECTED CANCER AGENT: Oxygen is not found on the following lists: FEDERAL OSHA Z LIST, NTP, CAL/OSHA, IARC; therefore it is not considered to be, nor suspected to be a cancer-causing agent by these agencies.

IRRITANCY OF PRODUCT: Contact with rapidly expanding gases or the refrigerated liquid can cause frostbite and damage to exposed skin and eyes.

SENSITIZATION OF PRODUCT: Oxygen is not a human skin or respiratory sensitizer.

REPRODUCTIVE TOXICITY INFORMATION: Listed below is information concerning the effects of Oxygen on the human reproductive system.

Mutagenicity: Oxygen is not reported to cause mutagenic effects in humans. High concentrations of Oxygen at atmospheric pressure caused chromosomal aberrations and mutations in specific test animal tissues.

Embryotoxicity: Oxygen is not reported to cause embryotoxic effects in humans.

Teratogenicity: Oxygen is not reported to cause teratogenic effects in humans. Exposure of pregnant hamsters to 3-4 atmospheres of 100% Oxygen for periods of 2-3 hours on days 6, 7, and 8 of pregnancy produced teratogenic effects in small, but significant number of fetuses.

Reproductive Toxicity: Oxygen is not reported to cause adverse reproductive effects in humans.

A *mutagen* is a chemical which causes permanent changes to genetic material (DNA) such that the changes will propagate through generation lines. An *embryotoxin* is a chemical which causes damage to a developing embryo (i.e., within the first eight weeks of pregnancy in humans), but the damage does not propagate across generational lines. A *teratogen* is a chemical which causes damage to a developing fetus, but the damage does not propagate across generational lines. A *reproductive toxin* is any substance which interferes in any way with the reproductive process.

BIOLOGICAL EXPOSURE INDICES (BEIs): Biological Exposure Indices (BEIs) have not been determined for Oxygen.

12. **ECOLOGICAL INFORMATION**

ENVIRONMENTAL STABILITY: Oxygen occurs naturally in the atmosphere. The gas will be dissipated rapidly in well-ventilated areas. The following environmental data are available for Oxygen.

OXYGEN:

- Log Kow = -0.85, oxygen does not bioconcentrate in aquatic organisms.

EFFECT OF MATERIAL ON PLANTS or ANIMALS: No adverse effect is anticipated to occur to animal or plant life, except for frost produced in the presence of rapidly expanding gases.

EFFECT OF CHEMICAL ON AQUATIC LIFE: No evidence is currently available on Oxygen’s effects on aquatic life.

13. **DISPOSAL CONSIDERATIONS**

PREPARING WASTES FOR DISPOSAL: Product removed from the cylinder must be disposed of in accordance with appropriate U.S. Federal, State, and local regulations or with regulations of Canada and its Provinces. Return cylinders with residual product to Argas, Inc. Do not dispose of locally.
14. TRANSPORTATION INFORMATION

THIS COMPRESSED GAS IS HAZARDOUS AS DEFINED BY 49 CFR 172.101 BY THE U.S. DEPARTMENT OF TRANSPORTATION.

For Oxygen, Gas:
- **PROPER SHIPPING NAME:** Oxygen, compressed
- **HAZARD CLASS NUMBER and DESCRIPTION:** 2.2 (Non-Flammable Gas)
- **UN IDENTIFICATION NUMBER:** UN 1072
- **PACKING GROUP:** Not Applicable
- **DOT LABEL(S) REQUIRED:** Class 2.2 (Non-Flammable Gas); Class 5.1 (Oxidizer)
- **NORTH AMERICAN EMERGENCY RESPONSE GUIDEBOOK NUMBER (2000):** 122
- **MARINE POLLUTANT:** Oxygen is not classified by the DOT as a Marine Pollutant (as defined by 49 CFR 172.101, Appendix B).

For Oxygen, Liquid:
- **PROPER SHIPPING NAME:** Oxygen, refrigerated liquid
- **HAZARD CLASS NUMBER and DESCRIPTION:** 2.2 (Non-Flammable Gas)
- **UN IDENTIFICATION NUMBER:** UN 1073
- **PACKING GROUP:** Not Applicable
- **DOT LABEL(S) REQUIRED:** Class 2.2 (Non-Flammable Gas), Class 5.1 (Oxidizer)
- **NORTH AMERICAN EMERGENCY RESPONSE GUIDEBOOK NUMBER (2000):** 122
- **MARINE POLLUTANT:** Oxygen is not classified by the DOT as a Marine Pollutant (as defined by 49 CFR 172.101, Appendix B).

TRANSPORT CANADA TRANSPORTATION OF DANGEROUS GOODS REGULATIONS: This gas is considered as Dangerous Goods, per regulations of Transport Canada. The use of the above U.S. DOT information from the U.S. 49 CFR regulations is allowed for shipments that originate in the U.S. For shipments via ground vehicle or rail that originate in Canada, the following information is applicable.

For Oxygen, Gas:
- **PROPER SHIPPING NAME:** Oxygen, compressed
- **HAZARD CLASS NUMBER and DESCRIPTION:** 2.2 (Non-Flammable Gas) [primary hazard]
 5.1 (Oxidizing Gas) [secondary hazard]
- **UN IDENTIFICATION NUMBER:** UN 1072
- **PACKING GROUP:** Not Applicable
- **HAZARD LABEL(S) REQUIRED:** Class 2.2 (Non-Flammable Gas), Class 5.1 (Oxidizer)
- **SPECIAL PROVISIONS:** None
- **EXPLOSIVE LIMIT & LIMITED QUANTITY INDEX:** 0.12
- **ERAP INDEX:** 3000
- **PASSENGER CARRYING SHIP INDEX:** 50
- **PASSENGER CARRYING ROAD OR RAIL VEHICLE INDEX:** 75
- **MARINE POLLUTANT:** Oxygen is not a Marine Pollutant

For Oxygen, Liquid:
- **PROPER SHIPPING NAME:** Oxygen, refrigerated liquid
- **HAZARD CLASS NUMBER and DESCRIPTION:** 2.2 (Non-Flammable Gas) [primary hazard]
 5.1 (Oxidizing Gas) [secondary hazard]
- **UN IDENTIFICATION NUMBER:** UN 1073
- **PACKING GROUP:** Not Applicable
- **HAZARD LABEL(S) REQUIRED:** Class 2.2 (Non-Flammable Gas), Class 5.1 (Oxidizer)
- **SPECIAL PROVISIONS:** None
- **EXPLOSIVE LIMIT & LIMITED QUANTITY INDEX:** 0.12
- **ERAP INDEX:** 3000
- **PASSENGER CARRYING SHIP INDEX:** 450
- **PASSENGER CARRYING ROAD OR RAIL VEHICLE INDEX:** Forbidden

15. REGULATORY INFORMATION

ADDITIONAL U.S. REGULATIONS:
- **U.S. SARA REPORTING REQUIREMENTS:** Oxygen is not subject to the reporting requirements of Sections 302, 304, and 313 of Title III of the Superfund Amendments and Reauthorization Act.
- **U.S. SARA THRESHOLD PLANNING QUANTITY:** There are no specific Threshold Planning Quantities for Oxygen. The default Federal MSDS submission and inventory requirement filing threshold of 10,000 lb (4,540 kg) may apply, per 40 CFR 370.20.
- **U.S. CERCLA REPORTABLE QUANTITY (RQ):** Not applicable.
- **U.S. TSCA INVENTORY STATUS:** Oxygen is on the TSCA Inventory.
- **OTHER U.S. FEDERAL REGULATIONS:** Not applicable.
15. REGULATORY INFORMATION (Continued)

ADDITIONAL U.S. REGULATIONS (continued):

U.S. STATE REGULATORY INFORMATION: Oxygen is covered under specific State regulations, as denoted below:

<table>
<thead>
<tr>
<th>State</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>Designated Toxic and Hazardous Substances: No.</td>
</tr>
<tr>
<td>California</td>
<td>Permissible Exposure Limits for Chemical Contaminants: No.</td>
</tr>
<tr>
<td>Florida</td>
<td>Substance List: Oxygen.</td>
</tr>
<tr>
<td>Illinois</td>
<td>Toxic Substance List: No.</td>
</tr>
<tr>
<td>Kansas</td>
<td>Section 302/313 List: No.</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Substance List: Oxygen.</td>
</tr>
<tr>
<td>Minnesota</td>
<td>List of Hazardous Substances: No.</td>
</tr>
<tr>
<td>Missouri</td>
<td>Employer Information/Tax.</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Right to Know Hazardous Substance List: Oxygen.</td>
</tr>
<tr>
<td>North Dakota</td>
<td>List of Hazardous Chemicals, Reportable Quantities: No.</td>
</tr>
<tr>
<td>Ohio</td>
<td>Substance List: Oxygen.</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Hazardous Substance List: No.</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>Hazardous Substance List: No.</td>
</tr>
<tr>
<td>Texas</td>
<td>Hazardous Substance List: No.</td>
</tr>
<tr>
<td>West Virginia</td>
<td>Hazardous Substance List: No.</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>Toxic and Hazardous Substances: No.</td>
</tr>
</tbody>
</table>

CALIFORNIA SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT (PROPOSITION 65): Oxygen is not on the California Proposition 65 lists.

CGA LABELING (for Cryogenic Liquid):

ALWAYS KEEP CONTAINER IN UPRIGHT POSITION.
EXTREMELY COLD, OXIDIZING LIQUID AND GAS UNDER PRESSURE.
VIGOROUSLY ACCELERATES COMBUSTION.
COMBUSTIBLES IN CONTACT WITH LIQUID OXYGEN MAY EXPLODE ON IGNITION OR CONTACT.
CAN CAUSE SEVERE FROSTBITE.
Keep oil, grease, and combustibles away.
Use only with equipment cleaned for oxygen service.
Do not get liquid in eyes, on skin, or clothing.
For liquid withdrawal, wear face shield and gloves.
Do not drop. Use hand truck for container movement.
Avoid spills. Do not walk on or roll equipment over spills.
Close valve after each use and when empty.
Use in accordance with the Material Safety Data Sheet.

FIRST-AID:
IN CASE OF FROSTBITE, obtain immediate medical attention.
DO NOT REMOVE THIS PRODUCT LABEL.

CGA LABELING (For Compressed Gas):

WARNING:
HIGH PRESSURE OXIDIZING GAS.
VIGOROUSLY ACCELERATES COMBUSTION.
Keep oil and grease away.
Open valve slowly.
Use only with equipment cleaned for oxygen service and rated for cylinder pressure.
Close valve after each use and when empty.
Use in accordance with the Material Safety Data Sheet.
DO NOT REMOVE THIS PRODUCT LABEL.

ADDITIONAL CANADIAN REGULATIONS:

CANADIAN DSL/UNDSL INVENTORY STATUS: Oxygen is on the DSL Inventory.

CANADIAN WHMIS SYMBOLS:
- Class A: Compressed Gases
- Class C: Oxidizer

16. OTHER INFORMATION

PREPARED BY:
CHEMICAL SAFETY ASSOCIATES, Inc.
PO Box 3519, La Mesa, CA 91944-3519
619/670-0609

The information contained herein is based on data considered accurate. However, no warranty is expressed or implied regarding the accuracy of these data or the results to be obtained from the use thereof. AIRGAS, Inc. assumes no responsibility for injury to the vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, AIRGAS, Inc. assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in his use of the material.
A large number of abbreviations and acronyms appear on a MSDS. Some of these which are commonly used include the following: CAS #: This is the Chemical Abstract Service Number that uniquely identifies each constituent.

EXPOSURE LIMITS IN AIR:
CEILING LEVEL: The concentration that shall not be exceeded during any part of the working exposure.
LOQ: Limit of Quantitation.
MAK: Federal Republic of Germany Maximum Concentration Values in the workplace.
NE: Not Established. When no exposure guidelines are established, an entry of NE is made for reference.
NIC: Notice of Intended Change.
NIOSH CEILING: The exposure that shall not be exceeded during any part of the workday. If instantaneous monitoring is not feasible, the ceiling shall be assumed as a 15-minute TWA exposure (unless otherwise specified) that shall not be exceeded at any time during a workday.
NIOSH RELs: NIOSH's Recommended Exposure Limits.
PEL-Permissible Exposure Limit: OSHA's Permissible Exposure Limits. This exposure value means exactly the same as a TLV; except that it is enforceable by OSHA. The OSHA Permissible Exposure Limits are based in the 1989 PELs and the June, 1993 Air Contaminants Rule (Federal Register: 58: 35338-35351 and 58: 40191). Both the current PELs and the vacated PELs are indicated. The phrase, "Vacated 1989 PEL," is placed next to the PEL that was vacated by Court Order.
SKIN: Used when there is a danger of cutaneous absorption.
STEL-Short Term Exposure Limit: Short Term Exposure Limit, usually a 15-minute time-weighted average (TWA) exposure that should not be exceeded at any time during a workday, even if the 8-hr TWA is within the TLV-TWA, PEL-TWA or REL-TWA.

TLV-Threshold Limit Value: An airborne concentration of a substance that represents conditions under which it is generally believed that nearly all workers may be repeatedly exposed without adverse effect. The duration must be considered, including the 8-hour.
TWA-Time Weighted Average: Time Weighted Average exposure concentration for a conventional 8-hr (TLV, PEL) or up to a 10-hr (REL) workday and a 40-hr workweek.
IDLH-Immediately Dangerous to Life and Health: This level represents a concentration from which one can escape within 30-minutes without suffering escape preventing or permanent injury.

HAZARDOUS MATERIALS IDENTIFICATION SYSTEM
HAZARD RATINGS: This rating system was developed by the National Paint and Coating Association and has been adopted by industry to identify the degree of chemical hazards.

HEALTH HAZARD:
0 (Safe): No Danger. No significant health risk, irritation of skin or eyes not anticipated. Skin Irritation: Essentially non-irritating. PII or Draize = 0. Eye Irritation: Essentially non-irritating, or minimal effects which clear in ≤ 24 hours [e.g. mechanical irritation]. Draize = 0. Oral Toxicity LD₅₀ Rat < 5000 mg/kg. Dermal Toxicity LD₅₀ Rat or Rabbit < 2000 mg/kg. Inhalation Toxicity 4-hrs LC₅₀ Rat < 20 mg/L). 1 (Slight Harm): Slight or mild irritation. Skin Irritation: Slightly or mildly irritating. Eye Irritation: Slightly or mildly irritating. Oral Toxicity LD₅₀ Rat > 500-5000 mg/kg. Dermal Toxicity LD₅₀ Rat or Rabbit: > 1000-2000 mg/kg. Inhalation Toxicity LC₅₀ 4-hrs Rat < 20 mg/L). 2 (Moderate Hazard): Temporary or transitory injury may occur. Skin Irritation: Moderately irritating; primary irritant; sensitizing. PII or Draize > 0, < 5. Eye Irritation: Moderately to severely irritating and/or corrosive; reversible corneal opacity; corneal involvement or irritation clearing in < 4-6 days. Draize > 0, ≤ 5. Oral Toxicity LD₅₀ Rat > 50-500 mg/kg. Dermal Toxicity LD₅₀ Rat or Rabbit > 200-1000 mg/kg. Inhalation Toxicity LC₅₀ 4-hrs Rat > 0.5-2 mg/L). 3 (Serious Hazard): Major injury likely unless prompt action is taken and medical treatment is given; high level of toxicity; corrosive. Skin Irritation: Severely irritating and/or corrosive; may destroy dermal tissue, cause skin burns, dermal necrosis. PII or Draize ≥ 5 with destruction of tissue. Eye Irritation: Corrosive. Irreversible destruction of ocular tissue; corneal involvement or irritation persisting for more than 21 days. Draize > 0, ≥ 8 with effects irreversible in 21 days. Oral Toxicity LD₅₀ Rat > 1-50 mg/kg. Dermal Toxicity LD₅₀ Rat or Rabbit > 20-200 mg/kg. Inhalation Toxicity LC₅₀ 4-hrs Rat > 0.05-0.5 mg/L). 4 (Severe Hazard): Life-threatening; major or permanent damage may result from single or repeated exposure. Skin Irritation: Not appropriate. Do not rate as a "4", based on skin irritation alone. Eye Irritation: Not appropriate. Do not rate as a "4", based on eye irritation alone. Oral Toxicity LD₅₀ Rat ≤ 1 mg/kg. Dermal Toxicity LD₅₀ Rat or Rabbit ≤ 20 mg/kg. Inhalation Toxicity LC₅₀ 4-hrs Rat ≤ 0.05 mg/L).

FLAMMABILITY HAZARD:
0 (Minimal Hazard) Materials that will not burn in air when exposed to a temperature of 815.5°C [1500°F] for a period of 5 minutes; 1 (Slight Hazard) Materials that must be pre-heated before ignition can occur. Material require considerable pre-heating, under all ambient temperature conditions before ignition and combustion can occur, including: Materials that will burn in air when exposed to a temperature of 815.5°C [1500°F] for a period of 5 minutes or less; Liquids, solids and semisolids having a flash point at or above 93.3°C [200°F] [e.g. OSHA Class III], or; Most ordinary combustible materials [e.g. wood, paper, etc.]. 2 (Moderate Hazard) Materials that must be moderately heated or exposed to relatively high ambient temperatures before ignition can occur. Materials in this degree will not, under normal conditions, form hazardous atmospheres in air, but under high ambient temperatures or moderate heating may release vapor in sufficient quantities to produce hazardous atmospheres in air, including: Liquids having a flash-point at or above 37.8°C [100°F]; Solid materials in the form of coarse dusts that may burn rapidly but that generally do not form explosive atmospheres; Solid materials in a fibrous or shredded form that may burn rapidly and create flash fire hazards (e.g., cotton, sisal, hemp; Solids and semisolids that readily give off flammable vapors); 3 (Serious Hazard) Liquids and solids that can be ignited under almost all ambient temperature conditions. Materials in this degree produce hazardous atmospheres with air under almost all ambient temperatures, or, unaffected by ambient temperature, are readily ignited under almost all conditions, including: Liquids having a flash point below 22.8°C [73°F] and having a boiling point at or above 38°C [100°F] and below 73.8°C [165°F] [e.g. OSHA Class IIA]; Materials that on account of their physical form or environmental conditions can form explosive mixtures with air and are readily dispersed in air [e.g., dusts of combustible solids, mists or droplets of flammable liquids]; Materials that burn extremely rapidly, usually by reason of self-contained oxygen [e.g. dry nitrocellulose and many organic peroxides]; 4 (Severe Hazard) Materials that will rapidly or completely vaporize at atmospheric pressure and normal ambient temperature or that are readily dispersed in air, and which will burn readily including: Flammable gases; Flammable liquid; Organic peroxides. Any liquid or gaseous material that is liquid while under pressure and has a flash point below 22.8°C [73°F] and a boiling point below 73.8°C [165°F] [e.g. OSHA Class IA]; Material that ignites spontaneously when exposed to air at a temperature of 54.4°C [130°F] or below [e.g. pyrophoric].

PHYSICOCHEMICAL HAZARD:
0 (Water Reactivity) Materials that do not react with water. Organic Peroxides: Materials that are normally stable, even under fire conditions and will not react with water. Explosives: Substances that are Non-Explosive. Unstable Compressed Gases: No Rating. Pyrophorics: No Rating. Oxidizers: No "0" rating allowed. Unstable Reactives: Substances that will not polymerize, decompose, corrode, or self-react; 1 (Water Reactivity) Materials that change or decompose upon exposure to moisture. Organic Peroxides: Materials that are normally stable, but can become unstable at high temperatures and pressures. These materials may react with water, but will not release energy. Explosives: Division 1.5 & 1.6 substances that are very insensitive explosives or that do not have a mass explosion hazard. Compressed Gases: Pressure below OSHA definition. Pyrophorics: No Rating. Oxidizers: Packaging Group III; Solids: any material that in either concentration tested, exhibits a mean burning time less than or equal to the mean burning time of a 3.7 potassium bromate/cellulose mixture and the criteria for Packaging Group I and II are not met. Liquids: any material that exhibits a mean burning time less than or equal to the pressure rise time of a 1:1 nitric acid (65%)cellulose mixture and the criteria for Packaging Group I and II are not met.

OXYGEN - O₂ MSDS (Document #: 001043) PAGE 9 OF 11
HAZARDOUS MATERIALS IDENTIFICATION SYSTEM

HAZARD RATINGS (continued):

PHYSICAL HAZARD (continued):

1 (continued): Unstable Reactives: Substances that may decompose, condense, or self-react, but only under conditions of high temperature and/or pressure and have little or no potential to cause significant heat generation or explosion hazard. Substances that readily undergo hazardous polymerization in the absence of inhibitors.

2 (Water Reactivity): Materials that may react violently with water.

Organic Peroxides: Materials that, in themselves, are normally unstable and will readily undergo violent chemical change, but will not detonate. These materials may also react violently with water.

Explosives: Division 1.4 - Explosive substances where the explosive effect is largely confined to the package and no projection of fragments of appreciable size or range are expected. An external fire must not cause a virtually instantaneous explosion of almost the entire contents of the package.

Compressed Gases: Pressurized and meet OSHA definition but < 514.7 psi absolute at 21.1°C (70°F) [500 psig].

Pyrophorics: No Rating. Oxidizers: Packing Group II.

Solids: any material that, either in concentration tested, exhibits a mean burning time of less than or equal to the mean burning time of a 2:3 potassium bromate/ cellulose mixture and the criteria for Packing Group I are not met.

Liquids: any material that exhibits a mean pressure rise time less than or equal to the pressure rise of a 1:1 aqueous sodium chlorate solution (50%)/cellulose mixture and the criteria for Packing Group I are not met.

Unstable Reactives: Substances that may polymerize, decompose, condense, or self-react at ambient temperature and/or pressure, but have a low potential to cause significant heat generation or explosion. Substances that readily form peroxides upon exposure to air or oxygen at room temperature.

3 (Water Reactivity): Materials that may form explosive reactions with water.

Organic Peroxides: Materials that are capable of detonation or explosive reaction, but require a strong initiating source, or must be heated under confinement before initiation; or materials that react explosively with water.

Explosives: Division 1.2 - Explosive substances that do not have a mass explosion hazard or a minor projection hazard, but do not have a mass explosion hazard.

Compressed Gases: Pressure < 514.7 psi absolute at 21.1°C (70°F) [500 psig]. Pyrophorics: No Rating. Oxidizers: Packing Group I.

Solids: any material that, in either concentration tested, exhibits a mean burning time less than the mean burning time of a 3:2 potassium bromate/cellulose mixture.

Liquids:Any material that spontaneously ignites when mixed with cellulose in a 1:1 ratio, or which exhibits a mean pressure rise time less than the pressure rise time of a 1:1 perchloric acid (50%)/cellulose mixture.

Unstable Reactives: Substances that may polymerize, decompose, condense or self-react at ambient temperature and/or pressure, but have a moderate potential to cause significant heat generation or explosion.

4 (Water Reactivity): Materials that react explosively with water without requiring heat or confinement.

Organic Peroxides: Materials that are readily capable of detonation or explosive decomposition at normal temperatures and pressures.

Explosives: Division 1.1 & 1.2-explosive substances that have a mass explosion hazard or a projection hazard. A mass explosion is one that affects almost the entire load instantaneously.

Oxidizers: No "4" rating.

Unstable Reactives: Substances that may polymerize, decompose, condense or self-react at ambient temperature and/or pressure and have a high potential to cause significant heat generation or explosion. PPE Rating B: Hand and eye protection is required for routine chemical use. PPE Rating C: Hand, eye, and body protection may be required for routine chemical use.
NATIONAL FIRE PROTECTION ASSOCIATION HAZARD RATINGS:

HEALTH HAZARD: 0 (material that on exposure under fire conditions would offer no hazard beyond that of ordinary combustible materials); 1 (material that on exposure under fire conditions could cause irritation or minor residual injury); 2 (materials that on intense or continued exposure under fire conditions could cause temporary incapacitation or possible residual injury); 3 (materials that can on short exposure could cause serious temporary or residual injury); 4 (materials that under very short exposure could cause death or major residual injury).

FLAMMABILITY HAZARD AND REACTIVITY HAZARD: Refer to definitions for "Hazardous Materials Identification System".

FLAMMABILITY LIMITS IN AIR: Much of the information related to fire and explosion is derived from the National Fire Protection Association (NFPA). Flash Point - Minimum temperature at which a liquid gives off sufficient vapors to form an ignitable mixture with air. Autoignition Temperature: The minimum temperature required to initiate combustion in air with no other source of ignition. LEL - the lowest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source. UEL - the highest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source.

NATIONAL FIRE PROTECTION ASSOCIATION HAZARD RATINGS (continued):

FLAMMABILITY HAZARD: 0 Materials that will not burn under typical fire conditions, including intrinsically noncombustible materials such as concrete, stone, sand. 1 Materials that must be preheated before ignition can occur. Materials in this degree require considerable preheating, under a, ambient temperature conditions, before ignition and combustion can occur. 2 Materials that must be moderately heated or exposed to relatively high ambient temperatures before ignition can occur. Materials in this degree would not under normal conditions form hazardous atmospheres with air, but under high ambient temperatures or under moderate heating could release vapor in sufficient quantities to produce hazardous atmospheres with air. 3 Liquids and solids that can be ignited under almost all ambient temperature conditions. Materials in this degree produce hazardous atmospheres with air under almost all ambient temperatures or, though unaffected by ambient temperatures, are readily ignited under almost all conditions. 4 Materials that will rapidly or completely vaporize at atmospheric pressure and normal ambient temperature or that are readily dispersed in air and will burn readily.

INSTABILITY HAZARD: 0 Materials that in themselves are normally stable, even under fire conditions. 1 Materials that in themselves are normally stable, but that can become unstable at elevated temperatures and pressures. 2 Materials that readily undergo violent chemical change at elevated temperatures and pressures. 3 Materials that in themselves are capable of detonation or explosive decomposition or explosive reaction, but that require a strong initiating source or that must be heated under confinement before initiation. 4 Materials that in themselves are readily capable of detonation or explosive decomposition or explosive reaction at normal temperatures and pressures.

FLAMMABILITY LIMITS IN AIR: Much of the information related to fire and explosion is derived from the National Fire Protection Association (NFPA). Flash Point - Minimum temperature at which a liquid gives off sufficient vapors to form an ignitable mixture with air. Autoignition Temperature: The minimum temperature required to initiate combustion in air with no other source of ignition. LEL - the lowest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source. UEL - the highest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source.

TOXICOLOGICAL INFORMATION:

Human and Animal Toxicology: Possible health hazards as derived from human data, animal studies, or from the results of studies with similar compounds are presented. Definitions of some terms used in this section are: LD₅₀ - Lethal Dose (solids & liquids) which kills 50% of the exposed animals; LC₅₀ - Lethal Concentration (gases) which kills 50% of the exposed animals; ppm concentration expressed in parts of material per million parts of air or water; mg/m³ concentration expressed in weight of substance per volume of air; mg/kg quantity of material, by weight, administered to a test subject, based on their body weight in kg. Other measures of toxicity include TDL₅₀, the lowest dose to cause a symptom and TDL₅₀ the lowest concentration to cause a symptom; TDO, LD₅₀, and TDL₂₅ or Tₘₐₓ, LC₅₀, and LC₄₀, the lowest dose (or concentration) to cause lethal or toxic effects. Cancer Information: The sources are: IARC - The International Agency for Research on Cancer; NTP - the National Toxicology Program, RTECS - the Registry of Toxic Effects of Chemical Substances, OSHA and CAL/OSHA, IARC and NTP rank chemicals on a scale of decreasing potential to cause human cancer with rankings from 1 to 4. Subrankings (2A, 2B, etc.) are also used. Other Information: BEI - ACGIH Biological Exposure Indices, represent the levels of determinants which are most likely to be observed in specimens collected from a healthy worker who has been exposed to chemicals to the same extent as a worker with inhalation exposure to the TLV.

ECOLOGICAL INFORMATION:

EC is the effect concentration in water. BCF = Bioconcentration Factor, which is used to determine if a substance will concentrate in lifetims which consume contaminated plant or animal matter. TL₅₀ = median threshold limit; Coefficient of Oil/Water Distribution is represented by log Kₐ or log Kₐw and is used to assess a substance's behavior in the environment.

REGULATORY INFORMATION:

U.S. and CANADA:

This section explains the impact of various laws and regulations on the material. ACGIH: American Conference of Governmental Industrial Hygienists, a professional association which establishes exposure limits. EPA is the U.S. Environmental Protection Agency. NIOSH is the National Institute of Occupational Safety and Health, which is the research arm of the U.S. Occupational Safety and Health Administration (OSHA). WHMIS is the Canadian Workplace Hazardous Materials Information System. DOT and TC are the U.S. Department of Transportation and the Transport Canada, respectively. Superfund Amendments and Reauthorization Act (SARA); the Canadian Domestic/Non-Domestic Substances List (DSL/NDDSL); the U.S. Toxic Substances Control Act (TSCA); Marine Pollutant status according to the DOT; the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund); and various state regulations. This section also includes information on the precautionary warnings which appear on the material's package label. OSHA - U.S. Occupational Safety and Health Administration.